1,997 research outputs found

    A Review of the Erosion of Thermal Barrier Coatings.

    Get PDF
    The application of thermal barrier coatings (TBCs) to components with internal cooling in the hot gas stream of gas turbine engines has facilitated a steep increase in the turbine entry temperature and the associated increase in performance and efficiency of gas turbine engines. However, TBCs are susceptible to various life limiting issues associated with their operating environment including erosion, corrosion, oxidation, sintering and foreign object damage (FOD). This is a review paper that examines various degradation and erosion mechanisms of TBCs, especially those produced by electron beam physical vapour deposition (EB-PVD). The results from a number of laboratory tests under various impact conditions are discussed before the different erosion and FOD mechanisms are reviewed. The transitions between the various erosion mechanisms are discussed in terms of the D/d ratio (contact area diameter/column diameter), a relatively new concept that relates the impact size to the erosion mechanism. The effects of ageing, dopant additions and calciumâ  magnesiumâ  aluminaâ  silicates on the life of TBCs are examined. It is shown that while ageing increases the erosion rate of EB-PVD TBCs, ageing of plasma sprayed TBCs in fact lowers the erosion rate. Finally modelling of EB-PVD TBCs is briefly intr

    Erosion, corrosion and erosion-corrosion of EB PVD thermal barrier coatings

    Get PDF
    Electron beam (EB) physical vapour deposited (PVD) thermal barrier coatings (TBCs) have been used in gas turbine engines for a number of years. The primary mode of failure is attributed to oxidation of the bond coat and growth of the thermally grown oxide (TGO), the alumina scale that forms on the bond coat and to which the ceramic top coat adheres. Once the TGO reaches a critical thickness, the TBC tends to spall and expose the underlying substrate to the hot gases. Erosion is commonly accepted as a secondary failure mechanism, which thins the TBC thus reducing its insulation capability and increasing the TGO growth rate. In severe conditions, erosion can completely remove the TBC over time, again resulting in the exposure of the substrate, typically Ni-based superalloys. Since engine efficiency is related to turbine entry temperature (TET), there is a constant driving force to increase this temperature. With this drive for higher TETs comes corrosion problems for the yttria stabilised zirconia (YSZ) ceramic topcoat. YSZ is susceptible to attack from molten calciumâ  magnesiumâ  aluminaâ  silicates (CMAS) which degrades the YSZ both chemically and micro-structurally. CMAS has a melting point of around 1240 à °C and since it is common in atmospheric dust it is easily deposited onto gas turbine blades. If the CMAS then melts and penetrates into the ceramic, the life of the TBC can be significantly reduced. This paper discusses the various failure mechanisms associated with the erosion, corrosion and erosionâ  corrosion of EB PVD TBCs. The concept of a dimensionless ratio D/d, where D is the contact footprint diameter and d is the column diameter, as a means of determining the erosion mechanism is introduced and discussed for E

    Nano and Micro indentation studies of bulk zirconia and EB PVD TBCs

    Get PDF
    In order to model the erosion of a material it is necessary to know the material properties of both the impacting particles as well as the target. In the case of electron beam (EB) physical vapour deposited(PVD) thermal barrier coatings (TBCs) the properties of the columns as opposed to the coating as a whole are important. This is due to the fact that discrete erosion events are on a similar scale as the size of the individual columns. Thus nano* and micro* indentation were used to determine the hardness and the Young"s modulus of the columns. However, care had to be taken to ensure that it was the hardness of the columns that was being measured and not the coating as a whole. This paper discusses the differences in the results obtained when using the two different tests and relates them to the interactions between the indent and the columns of the EB PVD TBC microstructure. It was found that individual columns had a hardness of 14 GPa measured using nano indentation, while the hardness of the coating, using micro indentation decreased from 13 to 2.4 GPa as the indentation load increased from 0.1 to 3N. This decrease in hardness was attributed to the interaction between the indenter and a number of adjacent columns and the ability of the columns to move laterally under indentation

    Effect of microstructure and temperature on the erosion rates and mechanisms of modified EB PVD TBCs

    Get PDF
    Thermal barrier coatings (TBCs) have now been used in gas turbine engines for a number of decades and are now considered to be an accepted technology. As there is a constant drive to increase the turbine entry temperature, in order to increase engine efficiency, the coatings operate in increasingly hostile environments. Thus there is a constant drive to both increase the temperature capabilities of TBCs while at the same time reducing their thermal conductivities. The thermal conductivity of standard 7 wt% yttria stabilized zirconia (7YSZ) electron beam (EB) physical vapour deposited (PVD) TBCs can be reduced in two ways: the first by modification of the microstructure of the TBC and the second by addition of ternary oxides. By modifying the microstructure of the TBC such that there are more fine pores, more photon scattering centres are introduced into the coatings, which reduce the heat transfer by radiation. While ternary oxides will introduce lattice defects into the coating, which increases the phonon scattering, thus reducing the thermal conductivity via lattice vibrations. Unfortunately, both of these methods can have a negative effect on the erosion resistance of EB PVD TBCs. This paper compares the relative erosion rates of ten different EB PVD TBCs tested at 90à ° impact at room temperature and at high temperature and discusses the results in term of microstructural and temperature effects. It was found that by modifying the coating deposition, such that a low density coating with a highly â  featheredâ  microstructure formed, generally resulted in an increase in the erosion rate at room temperature. When there was a significant change between the room temperature and the high temperature erosion mechanism it was accompanied by a significant decrease in the erosion rate, while additions of dopents was found to significantly increase the erosion rate at room and high temperature. However, all the modified coatings still had a lower erosion rate than a plasma sprayed coatings. So, although, relative to a standard 7YSZ coating, the modified coatings have a lower erosion resistance, they still perform better than PS TBCs and their lower thermal conductivities could make them viable alternatives to 7YSZ for use in gas turbine en

    Erosion of gadolinia doped EB-PVD TBCs

    Get PDF
    Gadolinia additions have been shown to significantly reduce the thermal conductivity of EB-PVD TBCs. The aim of this paper is to further the understanding on the effects of dopants on the erosion resistance of EB-PVD TBCs by studying the effects of 2 mol% Gd2O3 additions on the room and high temperature erosion resistance of as received and aged EB-PVD TBCs. Previously it has been reported that gadolinia additions increased the erosion rate of EB- PVD TBCs, this is indeed the case for room temperature erosion, however under high temperature (825 à °C) erosion conditions this is not the case and the doped TBCs have a slightly lower erosion rate than the standard YSZ EB-PVD TBCs. This has been attributed to a change in the erosion mechanisms that operate at the different temperatures. This change in mechanism was not expected under the impact conditions used and has been attributed to a change in the column diameter, and how this influences the dynamics of particle impactio

    Solid particle erosion of ceramics

    Get PDF
    The zeolite ZSM-5 is well-known for its unique intersecting channel system. This channel system has a great bearing on the shape-selective properties and the long life-times of ZSM-5. In this study, ZSM-5 was modified in various ways to eliminate the external acidity of the catalyst to further improve these properties, and the success and effects of these modifications were investigated primarily using temperature programmed desorption techniques. The internal surface of ZSM-5, a medium pore zeolite, plays a major role in the shape selective properties of this catalyst, due to the diffusional restrictions imposed by the channel system on bulky molecules. Even though the number of acid sites on the external surface is small compared to the total number of acid sites, these easily accessible and non-shape selective acid sites may provide a high turnover rate for non-shape selective reactions. Furthermore, the main cause of deactivation of ZSM-5 is thought to be the formation of polyaromatic molecules on the external surface, which block access to the channels of the catalyst

    Structural changes of thermal sprayed graphene nano platelets film into amorphous carbon under sliding wear

    Get PDF
    © 2020 The Authors Graphene has become a promising candidate to protect surfaces against friction due to its strength and lubricating ability. In this study, graphene nano platelets (GNP) thin films have been deposited onto stainless steel substrates by axially injecting GNP suspension through high velocity oxy fuel thermal spray gun. The tribological performance of the films under dry sliding wear was investigated through unlubricated ball on disc sliding wear test against a sintered alumina counter body ball under 5 N load. The understanding of the behaviour of the GNPs under sliding wear will be useful for improving the performance of graphene-based coatings which are in demand for wear resistant applications. A film was deposited showing significant improvements in friction with coefficient of friction value reduced by 7 times compared to uncoated stainless steel, even for a discontinuous film. A morphological analysis shows sliding wear led to change in particle shape from angular flakes into randomly oriented circles. Interatomic bonding and structural analysis performed reveals oxidation defect formations during wear test. Structural degradation and oxidation of GNPs during the process led to formation of amorphous carbon from graphene. Amorphous carbon formation reduces the lubricating ability and strength of the film, leading to failure

    An exploration of concepts of community through a case study of UK university web production

    No full text
    The paper explores the inter-relation and differences between the concepts of occupational community, community of practice, online community and social network. It uses as a case study illustration the domain of UK university web site production and specifically a listserv for those involved in it. Different latent occupational communities are explored, and the potential for the listserv to help realize these as an active sense of community is considered. The listserv is not (for most participants) a tight knit community of practice, indeed it fails many criteria for an online community. It is perhaps best conceived as a loose knit network of practice, valued for information, implicit support and for the maintenance of weak ties. Through the analysis the case for using strict definitions of the theoretical concepts is made

    Does \u2018bigger\u2019mean \u2018better\u2019? Pitfalls and shortcuts associated with big data for social research

    Get PDF
    \u2018Big data is here to stay.\u2019 This key statement has a double value: is an assumption as well as the reason why a theoretical reflection is needed. Furthermore, Big data is something that is gaining visibility and success in social sciences even, overcoming the division between humanities and computer sciences. In this contribution some considerations on the presence and the certain persistence of Big data as a socio-technical assemblage will be outlined. Therefore, the intriguing opportunities for social research linked to such interaction between practices and technological development will be developed. However, despite a promissory rhetoric, fostered by several scholars since the birth of Big data as a labelled concept, some risks are just around the corner. The claims for the methodological power of bigger and bigger datasets, as well as increasing speed in analysis and data collection, are creating a real hype in social research. Peculiar attention is needed in order to avoid some pitfalls. These risks will be analysed for what concerns the validity of the research results \u2018obtained through Big data. After a pars distruens, this contribution will conclude with a pars construens; assuming the previous critiques, a mixed methods research design approach will be described as a general proposal with the objective of stimulating a debate on the integration of Big data in complex research projecting

    Mining and Visualizing Research Networks using the Artefact-Actor-Network Approach

    Get PDF
    Reinhardt, W., Wilke, A., Moi, M., Drachsler, H., & Sloep, P. B. (2012). Mining and Visualizing Research Networks using the Artefact-Actor-Network Approach. In A. Abraham (Ed.), Computational Social Networks. Mining and Visualization (pp. 233-268). Springer. Also available at http://www.springer.com/computer/communication+networks/book/978-1-4471-4053-5Virtual communities are increasingly relying on technologies and tools of the so-called Web 2.0. In the context of scientific events and topical Research Networks, researchers use Social Media as one main communication channel. This raises the question, how to monitor and analyze such Research Networks. In this chapter we argue that Artefact-Actor-Networks (AANs) serve well for modeling, storing and mining the social interactions around digital learning resources originating from various learning services. In order to deepen the model of AANs and its application to Research Networks, a relevant theoretical background as well as clues for a prototypical reference implementation are provided. This is followed by the analysis of six Research Networks and a detailed inspection of the results. Moreover, selected networks are visualized. Research Networks of the same type show similar descriptive measures while different types are not directly comparable to each other. Further, our analysis shows that narrowness of a Research Network's subject area can be predicted using the connectedness of semantic similarity networks. Finally conclusions are drawn and implications for future research are discussed
    corecore